地质地理

1. Artesian spring

One type of natural spring s geographers are interested in is	n. 泉水
artesian springs.	n. 自流泉
Hiking through the woods, some of you may have been	n. 徒步旅行
surprised to see water flowing from an opening in the	
ground that was nowhere near a stream or river. That may	n. 溪、流
have been an artesian spring. To help you understand why	
water might flow like this from underground, I'd like to	
explain the two basic conditions that are necessary for their	
formation. The first condition is that water must be	n. 形成
contained in an aquifer .	n. 含水土层
An aquifer is an underground layer of rock or sediment that	n. 层/ n. 沉淀物
has pore s or holes in it. And this porous through rock	n. 小孔
allows water to flow through it freely.	adj. 多孔的
The aquifer must be inclined so that the upper end of it is	adj.倾斜、有斜坡的
exposed to the air at the surface of the ground. Rain water	n. 端
enters it through the expose d end and travels downward to	V. 暴露
the lower portions of the aquifer. The second condition is	
that above and below the aquifer there must be layers of	adj. 无细孔的
nonporous rock or clay.	n. 粘土
These are called aquiclude s and they will block or hinder	n. 隔水层
the flow of water.	v. 阻塞/ v. 阻碍
Aquicludes prevent water from drain ing out of aquifers. So	v. 流走, 排出
let's go back to our artesian springs. They are usually	
located above ground, near the lower end of inclined	
aquifers. Artesian springs are those places where some hole	
or crack extends from the ground surface down through the	n . 延伸
aquiclude and into the aquifer. Now the rain water that had	
drained into the aquifer from its exposed upper end created	
a buildup of pressure at the lower end. So if there is a crack	n.组织组成,加强
in the rock, a crack that runs from the aquifer to the surface,	(,',-,),-, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
then the pressure pushes the water up through it. And water	trickle: v. 滴流, 细
comes trickling out of the artesian spring.	细地流

2. Earth's interior

into the makeup of the Earth's interior. In fact, since this is n. 结构 the topic of your reading assignment for next time, let me spend these last few minutes of class talking about it. There were several important discoveries in the early part of this century that helped geologists develop a more accurate
picture of the Earth's interior. n. 内部构造
The first key discovery had to do with seismic wave s. n. 地震波
Remember they are the vibration s caused by earthquakes. n. 震动、波动
Well, scientists found that they traveled thousands of miles
through the Earth's interior. This finding enable d geologists v. 使能够
to study the inner parts of the Earth. You see, these studies
revealed that these vibrations were of two types: v. 显示、揭示
compression or P waves and shear or S waves. And
researchers found that P waves travel through both liquid s n. 液体
and solid s, while S waves travel only through solid matter. n. 固体
In 1906, a British geologist discovered that P waves slowed down at a certain depth but kept traveling deeper. On the
other hand, S waves either disappeared or were reflected
back, so he concluded that the depth marked the boundary n. 边界、界限
between a solid mantle and a liquid core . Three years later, n. 地幔/n.地核
another boundary was discovered that between the mantle
and the Earth's crust . There's still a lot to be learned about n. 地壳
the Earth. For instance, geologists know that the core is hot.
Evidence of this is the molten lava that flows out of 熔岩
volcanoes. But we're still not sure what the source of the n. 火山
heat is.

3. Mineral Collection

I'd like to begin by thanking Dr. Kane for inviting me to be here today. Although I'm not a geologist, I have been collecting mineral s for years.	n. 矿石、矿物
My collection is really diverse because I've traveled all over	adj. 多样的不同的
the world to find them. Today I've brought a few specimen s	n. 样本
for you to see. After I discuss each one, I'll pass it around so	
that you can look at it more closely. As you know, feldspar s	n. 长石
are the most abundant minerals and are divided into a	adj. 丰富的充裕的
number of types. These first samples are orthoclase s.	n . 正长石
Notice that they vary in color from white to pink to red. This	v. 不一样,变化
glassy one is found in volcanic rock. In fact, I found it in	Adj.像玻璃的
New Mexico on a collecting trip. This next sample that I'll	
pass around is a microcline mineral, also called	n. 微斜长石
amazonstone. You can identify it by its bright green color.	n. 亚马逊石
It's often used in jewelry and really is quite attractive. These	n. 珠宝
final samples are all plagioclase feldspars. Many	n . 斜长石
plagioclases are very rare , so I'm particularly proud of the	adj.罕见的
variety in my collection. I've also brought a few slides of	n. 多样性
some larger mineral samples, and if you'll turn out the light	n. 幻灯片
now, I'd like to show them to you.	

4. Earthquake Prediction

Now, you've been reading articles about the **tremendous** damage done to life and **property** by earthquakes. That's n. why **seismologists** have been working so hard to develop n. methods of earthquake prediction. We can now **predict** v. earthquakes fairly well, but the predictions only **locate** v. **potential** areas of danger. They don't predict the specific time and location at which an earthquake is likely to **occur**. Today I want to introduce to you three **prediction models** n. that have been developed.

The first prediction model looks along **earthquake faults**, those cracks in the Earth's **crust**, to find what are known as **seismic** gaps. Seismic gaps are places where the fault has shown little or no seismic activity for a long time. This theory **postulate**s that such places are due for a major shock.

The second model relies on **phenomena**, like ground flit. Using long **cylindrical** tubes containing water, observers noted that ground **tilt** tended to occur before major earthquakes. That led them to correctly predict the big Haicheng **quake** of 1975, the first successful earthquake prediction scientists have ever made. A million people were **evacuate**d from that Chinese city before the earthquake **struck**. Unfortunately, this method hasn't worked **consistently**, so we can't say it's been perfected.

The third model is based on the theory that major earthquakes closely follow **a series of** minor ones. Starting with the **measurements and timing** of the smaller quakes, a complex formula **calculates** the "times of increased **probability**" of a much larger quake. Right now, this method, like the first method, cannot predict **specific** times and places, but that may change as it is further developed. For the moment, none of these models can predict with reasonable **levels of** confidence.

adj. 巨大的 n. 财产 n. 地震学家 v. 预报 **v**. 定位在 adj. 可能的 v. 发生 n. 预测模式 n. 地震断层 **n**. 地壳 **n**. 断层 adj. 地震的 v. 假定 n. 现象 adj. 圆柱的 n. 倾斜、摆动 **n**. 地震 V. 撤离、疏散 v. strike. 侵袭 adv. 始终如一地 一连串一系列的 测量和确定时间 v 计算出 n. 概率,可能性 adj.明确的具体的

程度的

5. The depth of the ocean

One reason oceanographers analyze the sediment on the	n. 海洋学者
ocean floor is to see how long-term changes in Earth's	n. 沉积物
temperature have affected the depth of the ocean.	
By analyzing the remains of sea animals in old layers of	n. 残余、遗体
ocean sediment, oceanographers can determine the depth	
of the ocean in the past. They've analyzed hundreds of such	
layers, including some from the coldest periods of Earth's	n. 层
history—the ice ages. What they've found is that during the	n. 冰川期
ice ages, the amount of water in the oceans decrease d.	v. 下降、减少
Water levels in the ocean drop ped by about four hundred	v. 下降
feet. Water from the ocean evaporated and became frozen	v. 蒸发
in continental glacier s, so it didn't drain back into the ocean.	n. 冰川/ v. 排水
When temperatures eventually rose again, the glaciers	rise :上升
melted, and the oceans returned to their former depths.	v. 融化
Analysis of sedimentary data indicates that periods of	adj. 沉积的
glacial freezing and melting occurred in regular cycles of	adj. 冰川的
twenty thousand, forty thousand, and one hundred thousand	冰冻与融化
years. Oceanographers are interested in the history of	
seawater levels because they hope to use this historical	n. 海平面
data in order to predict the possible effect that global	n. 全球变暖现象
warming could have on seawater levels. If industrial	
pollutants are capable of heating global temperatures to	n. 污染物
the point that glaciers begin to melt, it is urgent for us to	n. 加热、提高
know precisely how high sea levels will rise as a result.	adj. 急迫紧急的

6. The Great Plains

Look at our topographical map and you'll see that the middle third of the North American continent from the Rocky Mountains almost to the Mississippi River is pretty flat. This	adj. 地形学的 落基山脉
is the Great Plain s. This kind of area is sometimes called a	n. 平原、草原 n. 大草原/大草原
prairie , sometimes a steppe . That's s-t-e-p-p-e. The defining features are level terrain , dry climate, and an	Adj.平坦的/n.地形
absence of trees.	缺少树木
The Great Plains are actually the former bed of a shallow	adj. 浅的
inland sea . Over millions of years, sediment left by glaciers,	n. 内海
water, and wind smooth ed out the dry sea bed. As I said,	v. 使平滑
the Great Plaints are border ed on the west by the Rocky	V. 接壤
Mountains. And it's really the Rockies that are responsible	致使
for the formation of the grasslands. The mountains are so	n. 牧草地、草原
high that they block the heavy moist air traveling eastward	V. 阻塞
form the Pacific Ocean. Lighter, drier air passes over the	adj. 潮湿的
mountains. Until people intervened with irrigation and	v. 干预、介入
farms, only grass could grow on the dry, windy plain. In fact,	n. 灌溉
we can divide the Great Plains into three zones. In the west,	
where it's driest and windiest, the grass is very short. In the	
eastern zone, there's more rain and grass grows as high as	
360 centimeters. In the middle third, there's a mix of grass	n. 混合
species that grow to an intermediate height.	adj. 中等的