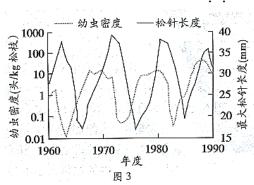

2014 高考理综试题

一、选择题

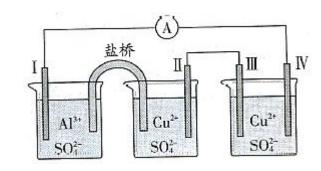
- 1. 以下细胞结构中, RNA 是其结构组分的是
 - A 液泡 B 核糖体 C 高尔基体 D 溶酶体
- 2. 以下过程一定存在反馈调节的是
 - ① 胰岛素分泌量对血糖浓度的影响
 - ② 运动强度对汗腺分泌的影响
 - ③ 降雨量对土壤动物存活率的影响
 - ④ 害虫数量对其天敌鸟类数量的影响
 - A 112 B 23 C 34 D 114
- 3. 某种兰花有细长的花矩(图 1),花矩顶端贮存着花蜜,这种兰花的传粉需借助具有细长口器的蛾在吸食花蜜的过程中完成。下列叙述正确的是
 - A 蛾口器的特征决定兰花花矩变异的方向
 - B 花矩变长是兰花新种形成的必要条件
 - C 口器与花矩的相互适应是共同进化的结果
 - D 蛾的口器会因吸食花蜜而越变越长
- 4. 下列叙述错误的是
 - A 醋酸菌在无氧条件下利用乙醇产生醋酸
 - B 酵母菌在无氧条件下利用葡萄汁产生酒精
 - C 泡菜腌制利用了乳酸菌的乳酸发酵
 - D 腐乳制作利用了毛霉等微生物的蛋白酶和脂肪酶
- 5. 油菜种子成熟过程中部分有机物的变化如图 2 所示,将不同成熟阶段的种子匀浆后检测,结果正确的


疋	

选项	取样时间	检测试剂	检测结果
A	第 10 天	斐林试剂	不显色
В	第 20 天	双缩脲试剂	不显色
С	第 30 天	苏丹 III 试剂	橘黄色
D	第 40 天	碘液	蓝色

6.在一稳定生态系统中,灰线小卷蛾幼虫以落叶松松针为食,幼虫摄食对松鼠的代谢活动有一定影响,进 而影响下一年幼虫食物的质和量。幼虫密度与最大松针长度的变化如图 3 所示。以下叙述错误的是

- A 幼虫密度呈周期性波动
- B 幼虫摄食改变了落叶松的丰富度
- C 可利用样方法调查幼虫的密度
- D 幼虫摄食对松针长度的影响具有滞后性

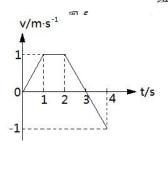

- 7、生活中处处有化学。下列说法正确的是
 - A. 制饭勺、饭盒、高压锅等的不锈钢是合金
 - B. 做衣服的棉和麻均与淀粉互为同分异构体
 - C. 煎炸食物的花生油和牛油都是可皂化的饱和酯类
 - D. 磨豆浆的大豆富含蛋白质,豆浆煮沸后蛋白质变成了氨基酸
- 8.水溶液中能大量共存的一组离子是
 - A. Na⁺、Ca²⁺、Cl⁻、SO₄²⁻
- B. Fe^{2+} , H^+ , SO_3^{2-} , ClO^-
- C. Mg^{2+} , NH_4^+ , Cl^- , SO_4^{2-} D. K^+ , Fe^{3+} , NO_3^- , SCN^-
- 9、下列叙述 I 和 II 均正确并有因果关系的是

选项	叙述 I	叙述 II
A	KNO ₃ 的溶解度大	用重结晶法除去 KNO3 中混有的 NaCl
В	BaSO4难溶于酸	用盐酸和 BaCl ₂ 溶液检验 SO ₄ ²⁻
С	NH ₃ 能使酚酞溶液变红	NH ₃ 可用于设计喷泉实验
D	Ca(OH)2能制成澄清石灰水	可配制 2.0 mol·L-1 的 Ca(OH)2 溶液

- 10、设 nA 为阿伏加德罗常数的数值。下列说法正确的是
 - A. 1mol 甲苯含有 6n_A 个 C H 键
 - B. 18g H₂O 含有 10n_A 个质子
 - C. 标准状况下, 22.4L 氨水含有 n_A 个 NH_3 分子
 - D. 56g 铁片投入足量浓 H₂SO₄ 中生成 n_A 个 SO₂ 分子
- 11、某同学组装了图 4 所示的电化学装置

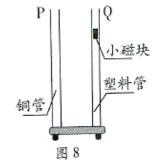
电极 I 为 Al, 其他电极均为 Cu, 则:

- A. 电流方向: 电极 $\mathbb{N} \to -\mathbb{A}^ \to$ 电极 \mathbb{I}
- B. 电极 [发生还原反应
- C. 电极 II 逐渐溶解
- D. 电极III的电极反应: Cu²⁺+2e⁻= Cu


12、常温下, 0.2mol/L 的一元酸 HA 与等浓度的 NaOH 溶液等体积混合后, 所得溶液中部分微粒组分及浓 度如图 5 所示,下列说法正确的是

浓度/mol·L⁻¹

- A. HA 为强酸
- B. 该混合液 pH=7
- C. 图中 X 表示 HA, Y 表示 OH-, Z 表示 H+
- D. 该混合溶液中: c(A-)+c(Y)=c(Na+)
- 13. 图 6 是物体做直线运动的 v-t 图象, 由图可知, 该物体
 - A. 第 1s 内和第 3s 内的运动方向相反
 - B. 第 3s 内和第 4s 内的加速度相同
 - C. 第 1s 内和第 4s 内的位移大小不相等
 - D.0-2s和0-4s内的平均速度大小相等


- 14. 如图 7 所示, 水平地面上堆放着原木, 关于原木 P 在支撑点 M、N 处受力方向, 下列说法正确的是
 - A. M 处受到的支持力竖直向上
 - B. N 处受到的支持力竖直向上
 - C. M 处受到的静摩擦力沿 MN 方向
 - D. N 处受到的静摩擦力沿水平方向

15. 如图 8 所示,上下开口,内壁光滑的铜管 ${\bf P}$ 和塑料管 ${\bf Q}$ 竖直放置,小磁块先后在两管中从相同高度处

由静止释放, 并落至底部, 则小磁块

- A. 在 P 和 Q 中都做自由落体运动
- B. 在两个下落过程中的机械能都守恒
- C. 在 P 中的下落时间比在 Q 中的长
- D. 落至底部时在 P 中的速度比在 Q 中的大

- 16. 图 9 是安装在列车车厢之间的摩擦缓冲器结构图。图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中
 - A. 缓冲器的机械能守恒
 - B. 摩擦力做功消耗机械能
 - C. 垫板的动能全部转化为内能
 - D. 弹簧的弹性势能全部转化为动能

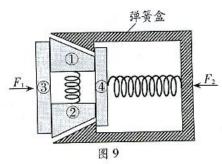
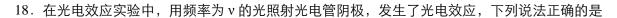
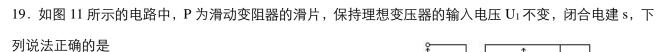
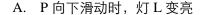


图 10

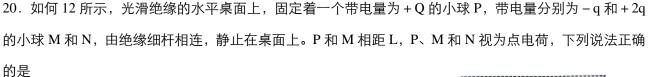


充气袋

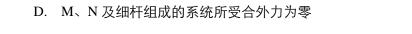

二、双选题

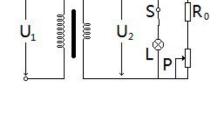

17. 用密封性好,充满气体的塑料袋包裹易碎品,如图 10 所示,充气袋四周被挤压时,假设袋内气体与外界无热交换,则袋内气体

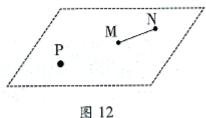
- A. 体积减小,内能增大
- B. 体积减小,压强减小
- C. 对外界做负功,内能增大
- D. 对外界做正功,内能减小



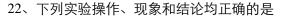
- A. 增大入射光的强度, 光电流增大
- B. 减小入射光的强度,光电效应现象消失
- C. 改用频率小于 v 的光照射, 一定不发生光电效应
- D. 改用频率大于 v 的光照射, 光电子的最大初动能变大

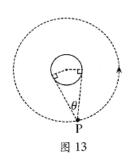



- B. P 向下滑动时,变压器的输出电压不变
- C. P 向上滑动时, 变压器的输入电流变小
- D. P 向上滑动时, 变压器的输出功率变大



- B. P、M 和 N 在同一直线上
- C. 在 P 产生的电场中, M、N 处的电势相同


4

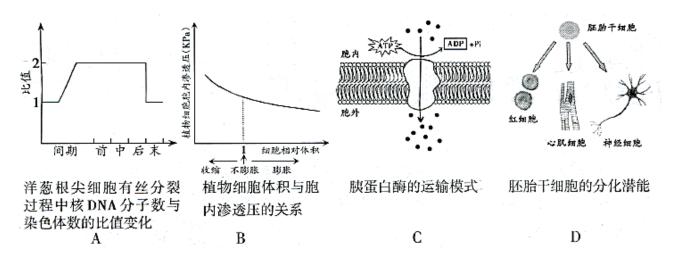

21. 如图 13 所示, 飞行器 P 绕某星球做匀速圆周运动。星球相对飞行器的张角为 θ , 下列说法正确的是

- A. 轨道半径越大, 周期越长
- B. 轨道半径越大,速度越大
- C. 若测得周期和张角,可得到星球的平均密度
- D. 若测得周期和轨道半径,可得到星球的平均密度

选项	实验操作	现象	结论
A	向苏打和小苏打溶液中分别加入盐酸	均冒气泡	两者均能与盐酸反应
В	向 AgNO3 溶液中滴加过量氨水	溶液澄清	Ag+与 NH ₃ H ₂ O 能大量共存
С	将可调高度的铜丝伸入到稀 NHO3 中	溶液变蓝	Cu 与稀 HNO3 发生置换反应
D	将 KI 和 FeCl ₃ 溶液在试管中混合后,加	下层溶液显紫红色	氧化性: Fe ³⁺ >I ₂
	入 CCl ₄ ,振荡,静置		

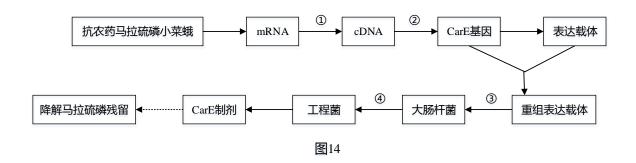

23.甲~辛等元素在周期表中的相对位置如下表。甲和戊的原子序数相差 3,戊的一种单质是自然界硬度最大的物质,丁和辛属同周期元素。下列判断正确的是

A. 金属性: 甲>乙>丁


B. 原子半径: 辛>己>戊

C. 丙与庚的原子核外电子数相差 13

D. 乙的单质在空气中燃烧生成只含离子键的化合物


24 以下选项正确的是

25 利用基因工程技术生产羧酸酯酶(CarE)制剂的流程如图 14 所示,下列叙述正确的是

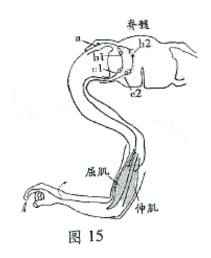
- A 过程①需使用逆转录酶
- B 过程②需使用解旋酶和 PCR 获取目的基因
- C 过程③使用的感受态细胞可用 NaCl 溶液制备
- D 过程④可利用 DNA 分子杂交鉴定目的基因是否已导入受体细胞

三、非选择题

26 观测不同光照条件下生长的柑橘,结果见下表。请回答下列问题

大脑皮层的_____中枢以及言语区的_____

光照强度	叶色	平均叶面积(cm²)	气孔密度(个 mm ⁻²)	净光合速率 (μmol CO ₂ m ⁻² s ⁻¹)
强	浅绿	13.6 (100%)	826 (100%)	4.33(100%)
中	绿	20.3 (149%)	768 (93%)	4.17(96%)
弱	深绿	28.4 (209%)	752 (91%)	3.87(89%)

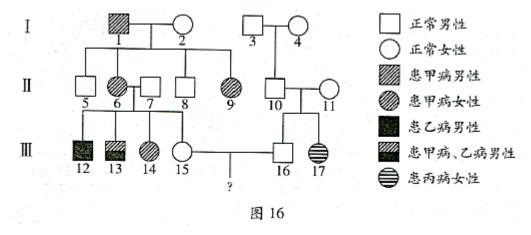

注: 括号内的百分数以强光照的数据作为参照

(1)CO ₂ 以方式	式进入叶绿体后,与	结合而被固定,固定产物的	的还原需要光反应提供的。
(2) 在弱光下,柑橘	通过和	来吸收更多的光能,以适应弱	影光环境。
(3)与弱光相比,强	虽光下柑橘平均每叶片	的气孔总数,单	位时间内平均每片叶子 CO2 吸收
量。对强光下 <u>结</u>	生长的柑橘适度遮阴,	持续观察叶色、叶面积和净:	光合速率,这三个指标中,最先发
生改变的是,	最后发生改变的是	o	
27. (1) 小红不小心	ン被针刺,随即出现 护	台手动作,其 神经反射如图	15 所示。图 15 中传出神经元
是	。b1 兴奋后使 c1 兴	奋,而 b2 兴奋后使 c2 抑制,	可推测 b1 和 b2 的突触小泡释放
的	是不同的物质。小红挤	台手之后对妈妈说:"我手指被	b针刺了,有点疼。"该过程一定有

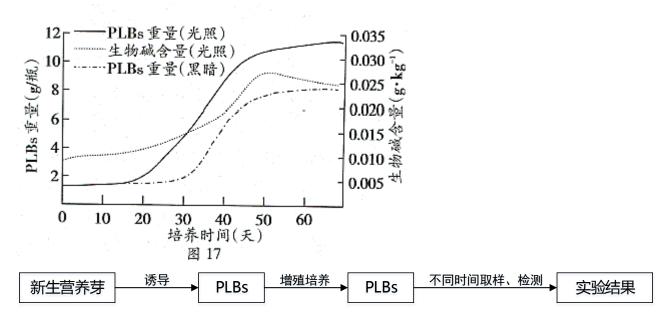
_参与调节。

(2)脊髓灰质炎(脊灰)病毒感染可使脊髓神经元受损而影响有关神经反射,接种疫苗是预防脊灰的有效措施。某研究跟踪监测 84 名儿童先后两次接种改进的脊灰病毒灭活疫苗的免疫结果。结果见右表, D≥4 者免疫结果呈阳性, D 值越高者血清中抗体浓度越高。由表可知,初次免疫的阳性率为______。请总结再次免疫效果与初次免疫效果的差异,并分析产生差异的原因。

, 1,10° A1 1,4 (30)				
D	初次免疫		再次	欠免疫
D	人数	百分比	人数	百分比
< 4	1	1.2	0	0.0
4	0	0.0	0	0.0
8	1	1.2	0	0.0
16	2	2.4	0	0.0
32	8	9.5	0	0.0
64	11	13.1	0	0.0
128	31	36.9	0	0.0
256	10	11.9	0	0.0
512	14	16.6	6	7.2
1024	3	3.6	17	20.2
> 1024	3	3.6	61	72.2
合计	84	100	84	100


注: D 为儿童血清经倍比稀释后检出抗体的最大稀释倍数

28. 图 16 是某家系甲、乙、丙三种单基因遗传病的系谱图,其基因分别用 A、a、B、b 和 D、d 表示。 甲病是伴性遗传病,II-7 不携带乙病的致病基因。在不考虑家系内发生新的基因突变的情况下,请回答下


列问题:

(1)	甲病的遗传方式是	,	乙病的遗传方式	:是	丙病的遗传方式
是	, II-	6 的基因型是_	0		

- (2) III-13 患两种遗传病的原因是。

- 29. 铁皮石斛是我国名贵中药,生物碱是其有效成分之一。应用组织培养技术培养铁皮石斛拟原球茎(简称 PLBs,类似愈伤组织)生产生物碱的实验流程如下:

在固体培养基上, PLBs 的重量、生物碱含量随增殖培养时间的变化如图 17 所示,请回答下列问题:

(1)	选用新生营养芽为外植体的原因是	诱导外植体形成 PLBs 的过程称	•

- (2) 与黑暗条件下相比,PLBs 在光照条件下生长的优势体现在______, ________。
- (3) 脱落酸 (ABA) 能提高生物碱含量, 但会抑制 PLBs 的生长。若采用液体培养, 推测添加适量的 ABA 可提高生物碱产量。同学们拟展开探究实验验证该推测, 在设计实验方案时探讨了一下问题:
- ② 实验进程和取样:实验 50 天完成,每 10 天取样,将样品(PLBs)称重(g/瓶)后再测定生物碱含量。如初始(第 0 天)数据已知,实验过程中还需测定的样品数为。
- 30、(15分)不饱和酯类化合物在药物、涂料等领域应用广泛。
 - (1) 下列关于化合物 [的说法,正确的是____。
 - A. 遇 FeCl₃ 溶液可能显紫色
 - B. 可发生酯化反应和银镜反应
 - C. 能与溴发生取代反应和加成反应
 - D. 1mol 化合物 I 最多能与 2mol NaOH 反应
 - (2) 反应①是一种由烯烃直接制备不饱和酯的新方法:

化合物 Π 的分子式为______。 1 mol 化合物 Π 能与_____ mol H_2 恰好完全反应生成饱和烃类化合物。

- (3) 化合物 II 可由芳香族化合物Ⅲ或Ⅳ分别通过消去反应获得,但只有Ⅲ能与 Na 反应产生 H₂, Ⅲ的结构 简式为_______(写 1 种);由Ⅳ生成 II 的反应条件为_____。 -{CH₂-CH₁,
- (4) 聚合物 COOCH₂CH₃ 可用于制备涂料,其单体结构简式为______,利用类似反应①的方法,仅以乙烯为有机物原料合成该单体,涉及的反应方程式为_____。
- 31、用 $CaSO_4$ 代替 O_2 与燃料 CO 反应,既可提高燃烧效率,又能得到高纯 CO_2 ,是一种高效、清洁、经济的新型燃烧技术。反应①为主反应,反应②和③为副反应。

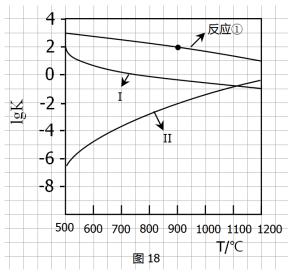
$$\textcircled{1} \frac{1}{4} \, CaSO_4(s) + CO(g) \Longrightarrow \frac{1}{4} \, CaS(s) + CO_2(g)$$

$$\Delta H_1 = -47.3 \text{ kJ mol}^{-1}$$

$$2$$
CaSO₄(s) + CO(g) \rightleftharpoons CaO(s) + CO₂(g) + SO₂(g)

$$\Delta H_2 = +210.5 \text{ kJ mol}^{-1}$$

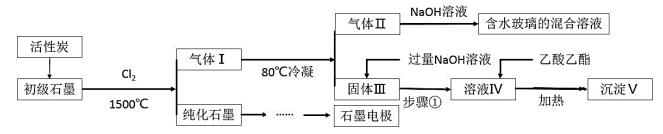
$$\cent{3}$$
CO(g) $\Longrightarrow \frac{1}{2}$ C(s) $+\frac{1}{2}$ CO₂(g)


$$\Delta H_3 = -86.2 \text{ kJ mol}^{-1}$$

(1) 反应
$$2\text{CaSO}_4(s) + 7\text{CO}(g)$$
 = $\text{CaS}(s) + \text{CaO}(s) + 6\text{CO}_2(g) + \text{C}(s) + \text{SO}_2(g)$ 的 $\Delta H = \underline{\hspace{1cm}}$ 。

 $(用 \Delta H_1 \setminus \Delta H_2 和 \Delta H_3 表示)$

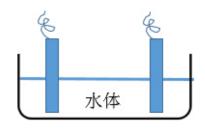
(2) 反应①~③的平衡常数的对数 $\lg K$ 随反应温度 T 的变化曲线见图 18。结合各反应的 ΔH ,归纳 $\lg K \sim T$


曲线的变化规律: a) _____; b) _____

(3)向盛有 $CaSO_4$ 的真空恒容密闭容器中充入 CO,反应①于 900 ℃达到平衡, c_{P} $_{P}$ $_{$

(4) 为减少副产物,获得更纯净的 CO₂,可在初始燃烧中适量加入_____。

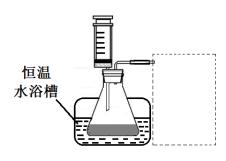
32、石墨在材料领域有重要应用。某初级石墨中含 SiO_2 (7.8%)、 Al_2O_3 (5.1%)、 Fe_2O_3 (3.1%) 和 MgO (0.5%)等杂质。设计的提纯与综合利用工艺如下:



(注: SiCl₄的沸点为 57.6℃, 金属氯化物的沸点均高于 150℃)

(1) 向反应器重通入 Cl_2 前,需通一段时间 N_2 ,主要目的是。	
(2) 高温反应后,石墨中氧化物杂质均转变为相应的氯化物。气体 I 中的碳氧化物主要为_	。由
气体 II 中某物质得到水玻璃的化学反应方程式为。	
(3) 步骤①为:搅拌、,所得溶液 IV 中的阴离子有。	
(4) 由溶液 IV 生成沉淀 V 的总反应的离子方程式为	。100kg 初
级石墨最多可获得 V 的质量为kg。	

(5) 石墨可用于自然水体中铜件的电化学防腐,完成图 19 防腐示意图,并作相应标注。

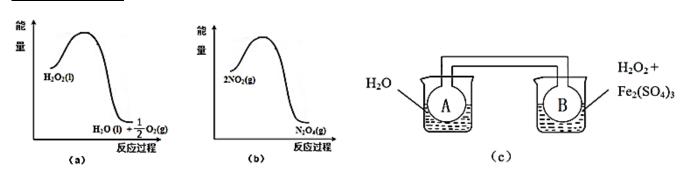

- 33、 H_2O_2 是一种绿色氧化还原剂,在化学研究中应用广泛。
- (1) 某小组拟在同浓度 Fe^{3+} 的催化下,探究 H_2O_2 浓度对 H_2O_2 分解反应速率的影响。

限选试剂与仪器: 30% H_2O_2 、0.1mol L^{-1} $Fe_2(SO_4)_3$ 、蒸馏水、锥形瓶、双孔塞、水槽、胶管、玻璃导管、量筒、秒表、恒温水浴槽、注射器

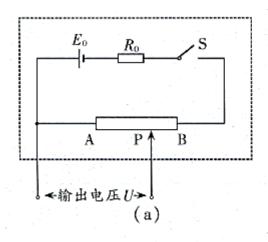
①写出本实验 H_2O_2 分解反应方程式并标明电子转移的方向和数目: _______。

②设计实验方案:在不同 H_2O_2 浓度下,测定______。(要求所测得的数据能直接体现反应速率大小)。

③设计实验装置,完成下图的装置示意图。



④参考下格式,拟定实验表格,完整体现实验方案(列出所选试剂体积、需记录的待测物理量和所拟定的数据;数据用字母表示)



物理 实验序号	$V [0.1 \text{ mol} \cdot \text{L}^{-1} \text{Fe}_2(\text{SO}_4)_3] / \text{mL}$	
1	a	
2	a	

- 34、(1) 某同学设计的可调电源电路如图 22(a)所示, R_0 为保护电阻,P 为滑动变阻器的滑片,闭合电键 S_{\circ}
- ①用电压表测量 $A \setminus B$ 两端的电压:将电压表调零。选择 0-3V 档,示数如图 22(b),电压值为______ V。
- ②在接通外电路之前,为了保证外电路的安全,滑片 P 应先置于______端。
- ③要使输出电压 U 变大, 滑片 P 应向_____端滑动。
- ④若电源电路中不接入 R₀,则在使用过程中,存在______的风险(填"断路"或"短路")。

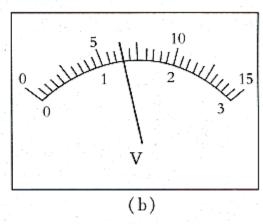
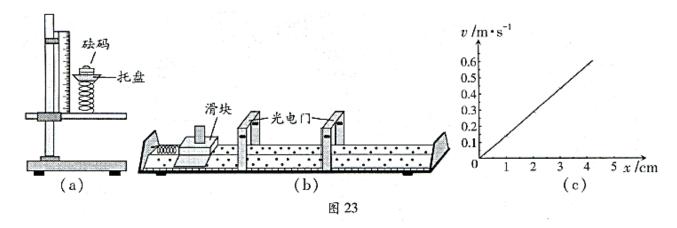
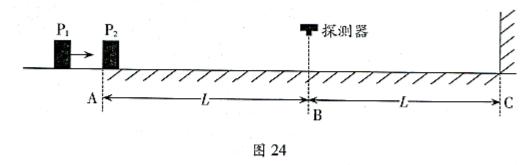


图 22

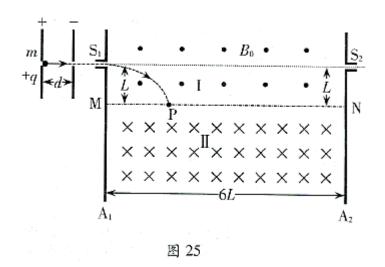

- (2) 某同学根据机械能守恒定律,设计实验探究弹簧的弹性势能与压缩量的关系。
- ①如图 23 (a),将轻质弹簧下端固定于铁架台,在上端的托盘中依次增加砝码,测量相应的弹簧长度,部分数据如下表,由数据算得劲度系数 k=_____N/m,(g 取 9.80m/s²)


砝码质量(g)	50	100	150
弹簧长度 (cm)	8. 62	7. 63	6. 66

- ②取下弹簧,将其一端固定于气垫导轨左侧,如图 23 (b) 所示,调整导轨,使滑块自由滑动时,通过两个光电门的速度大小 _____。
- ③用滑块压缩弹簧,记录弹簧的压缩量 x,释放滑块。记录滑块脱离弹簧后的速度 v,释放滑块过程中,弹簧的弹性势能转化为____。
- ④重复③中的操作,得到 v 与 x 的关系如图 23 (c),由图可知, v 与 x 成______关系。由上述实验可得结论:对同一根弹簧,弹性势能与弹簧的______成正比。

35、图 24 的水平轨道中,AC 段的中点 B 的正上方有一探测器,C 处有一竖直挡板,物体 P_1 沿轨道向右以速度 v_1 与静止在 A 点的物体 P_2 碰撞,并接合成复合体 P,以此碰撞时刻为计时零点,探测器只在 t_1 = 2s, t_2 = 4s 内工作。已知 P1、 P_2 质量都为 m = 1kg,P 与 AC 间的动摩擦因数为 μ = 0.1,AB 段长 L = 4m,g 取 $10m/s^2$, P_1 、 P_2 和 P 均视为质点,P 与挡板的碰撞为弹性碰撞。

- (1) 若 $v_1=6m/s$ 。求 P_1 、 P_2 碰撞后瞬间的速度大小 v 和碰撞损失的动能 ΔE ;
- (2) 若 P 与挡板碰后,能在探测器的工作时间内通过 B 点。求 v_1 的取值范围和 P 向左经过 A 点时的最大动能 E。



36、如图 25 所示,足够大的平行挡板 A_1 、 A_2 竖直放置,间距 6L。两板间存在两个方向相反的匀强磁场区域 I 和 II,以水平面 MN 为理想分界面, I 区的磁感应强度为 B_0 ,方向垂直纸面向外, A_1 、 A_2 上各有位置正对的小孔 S_1 、 S_2 ,两孔与分界面 MN 的距离均为 L。质量为 m、电量为 + q 的粒子经宽度为 d 的匀强电场由静止加速后,沿水平方向从 S_1 进入 I 区,并直接偏转到 MN 上的 P 点,再进入 II 区。P 点与 A_1 板的距离是 L 的 k 倍。不计重力,碰到挡板的粒子不予考虑。

- (1) 若 K = 1, 求匀强电场的电场强度 E;
- (2)若 2 < K < 3,且粒子沿水平方向从 S_2 射出,求粒子在磁场中的速度大小 v 与 k 的关系式和 II 区的磁感应强度 B 与 k 的关系式。

高考生物参考答案

1-6: BDCACB 24: BD 25: AD

26、(1)自由扩散 C_5 ATP 和[H]/NADPH (2)提高叶绿素含量 增加叶叶面积

(3) 较少 较少 净光合速率 叶面积

27、(1) c1、c2 神经递质 躯体感觉中枢(感觉) s区(运动性语言中枢)

(2) 98.8% 差异: 再次免疫与初次免疫相比,阳性率提高到 100%,且绝大多数儿童血清抗体浓度远高于初次免疫:原因:初次免疫产生的记忆细胞再次接触脊灰病毒抗原时,迅速增殖分化为浆细胞,快速产生大量抗体。

- 28、(1) 伴 X 染色体显性遗传病 伴 X 染色体隐性遗传病 常染色体隐性遗传病 DDX^{AB}X^{ab} 或 DdX^{AB}X^{ab}
- (2) II -6 的初级卵母细胞在减数第一次分裂前期,两条 X 染色体的非姐妹染色单体发生交换,形成 X^{Ab} 型的卵子并将致病基因遗传给III-13
 - (3) 301/1200 1/1200

(4)RNA 聚合酶

- 29、(1)细胞分化程度低,易诱导形成 LBPs 脱分化
 - (2) 生长起始较快; 快速生长时间较长; PLBs 产量更高;
 - (3) ①灭菌冷却 ②75 ③ PLBs 的重量与生物碱含量乘积的平均值最大

 $2H_2O$

COOCH₂CH₃

高考化学参考答案

1-6: ACBBAD 22: AD 23: BC

30、(1) AC

(2) C₉H₁₀; 4

- 31, (1) $4\Delta H_1 + \Delta H_2 + 2\Delta H_3$
- (2) a) $\Delta H < 0$ 即正反应放热时,温度越高,平衡常数 K 越小, $\lg K$ 越小(或 $\Delta H > 0$ 即正反应吸热时,温度越高,平衡常数 K 越大, $\lg K$ 越大);b) ΔH 的数值越大,平衡常数 K 的随温度变化越快, $\lg K \sim T$ 的曲线 越陡峭
- (3) 设 CO 的初始浓度为 a mol L^{-1} , 转化浓度为 x mol L^{-1}

$$\frac{1}{4} CaSO_4(s) + CO(g) \Longrightarrow \frac{1}{4} CaS(s) + CO_2(g)$$

初始浓度 (mol L-1)

a

0

转化浓度 (mol L-1)

 \boldsymbol{x}

 \boldsymbol{x}

平衡浓度 (mol L-1)

 8.0×10^{-5}

λ

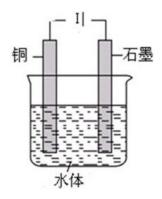
∵900°C时 lg*K*=2,即
$$K = \frac{c(CO)}{c(CO_2)} = \frac{x}{8.0 \times 10^{-5}} = 10^2$$

 $\therefore x = 8.0 \times 10^{-3}$

$$a = x + 8.0 \times 10^{-5} = 8.08 \times 10^{-3}$$

CO 的转化率=
$$\frac{x}{a} \times 100\% = \frac{8.0 \times 10^{-3}}{8.08 \times 10^{-3}} \times 100\% = 99\%$$

(4) CaO (或 Ca(OH)2或 CaCO3)


(5) CaS + 2O₂ <u>高温</u>CaSO₄; CH₃

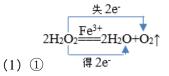
- 32、(1) 排尽反应器中的空气,防止空气中的 O_2 与石墨在高温下发生反应,减少石墨的损失
 - (2) CO; $SiCl_4 + 6NaOH = Na_2SiO_3 + 4NaCl + 3H_2O$
 - (3) 过滤; OH-、Cl-、AlO₂-
 - (4) $2H_2O + AlO_2^- + CH_3COOC_2H_5 \xrightarrow{\triangle} Al(OH)_3 \downarrow + C_2H_5OH + CH_3COO^-$; 7.8

(5)

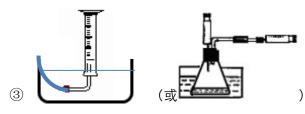
高考物理答案

13-16: BACB

17: AC


18: AD

19: BD


20: BD

21:AC

33.

②反应相同时间内产生气体的体积(或产生相同体积的气体所需时间的大小)

4

物理量序号	30%H ₂ O ₂ 的体积	蒸馏水体积/mL	0.1mol L-1Fe ₂ (SO ₄) ₃ 体积/mL	单位时间内产生气体 的体积/mL
1	a	V-a	d	x
2	b	V-b	d	у

- (2) 深,原因是过氧化氢的分解是放热反应,又因为图像表示 $2NO_2 \longleftrightarrow N_2O_4 \triangle H < 0$,所以升高温度平 衡向逆方向移动, 生成更多的二氧化氮, 因此颜色加深。
- 34. (1) ① 1.30 V ② A

- ④ 短路

- (2) ① 50
- ② 相等
- ③ 滑块的动能 ④ 正比,*x*²
- 35. 【答案】(1)9J (2)164J

【解析】(1) P_1 、 P_2 发生完全非弹性碰撞,碰撞过程中 P_1 、 P_2 构成的系统总动量守恒,有

$$mv_1 = 2mv \tag{1}$$

解得碰撞后瞬间速度大小为

$$v = 3 \text{ m/s} \tag{2}$$

碰撞前后动能变化

$$\Delta E = \frac{1}{2} (2m) v_2^2 - \frac{1}{2} m v_1^2 \tag{3}$$

联立(1)(2)两式代入相关数据可解得碰撞前后动能损失为

$$\left| \Delta E \right| = 9 \text{ J} \tag{4}$$

(2) P 在 A→B→C→B 过程中始终做匀减速运动,其加速度为

$$a = -\mu g \tag{5}$$

通过的距离为

$$s = 3L \tag{6}$$

由运动学公式有

$$s = vt + \frac{1}{2}at^2\tag{7}$$

① 若 $P \propto t = 2 \text{ s}$ 时恰好第二次通过 B 点,联立(1)(5)(6)(7)代入相关数据可解得

$$v_1 = 14 \text{ m/s}$$
 (8)

② 若 P 在 t = 4 s 时恰好第二次通过 B 点,联立(1)(5)(6)(7)代入相关数据可解得

$$v_1 = 10 \text{ m/s} \tag{9}$$

综上, 若 P 要在探测器的工作时间内第二次通过 B 点需满足

$$10 \text{ m/s} \le v_1 \le 14 \text{ m/s} \tag{10}$$

P 在 $A \to B \to C \to B \to A$ 运动过程中摩擦力始终做负功,设其向左经过 A 点时的动能为 E_{kt} ,根据动能定理有

$$-\mu(2m)g(4L) = E_{kt} - \frac{1}{2}(2m)v^2 \tag{11}$$

化简得

$$E_{kt} = mv^2 - 8\mu mgL \tag{12}$$

若要使得 E_{kt} 最大,则应使v最大,即使 v_1 最大,代入 $v_{lmax}=14~m/s$ 以及其他相关数据可解得

$$E_{ktmax} = 164 J \tag{13}$$

36. 【答案】(1)
$$E = \frac{qB_0^2L^2}{2md}$$
 (2) $v = \frac{(k^2+1)qB_0L}{2m}$ $B = \frac{kB_0}{3-k}$