

新东方: 2015 考研数学一解答题真题

解答题

- **(15)**设函数 $f(x) = x + a \ln(1+x) + bx \cdot \sin x$, $g(x) = kx^3$, 若 f(x) 与 g(x) 在 $x \to 0$ 是等价无穷小,求 a , b , k 值。
- (16)设函数 f(x) 在定义域 I 上的导数大于零,若对任意的 $x_0 \in I$,曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线与直线 $x = x_0$ 及 x 轴所围成的区域的面积为 4,且 f(0) = 2,求 f(x) 的表达式。
- **(17)** 已知函数 f(x,y) = x + y + xy , 曲线 $C: x^2 + y^2 + xy = 3$, 求 f(x,y) 在曲线 C 上的最大方向导数.
- (I) 设函数u(x), v(x) 可导,利用导数定义证明

[u(x)v(x)]'=u'(x)v(x)+u(x)v(x)'

(Π) 设函数 $u_1(x), u_2(x)...u_n(x)$ 可导, $f(x) = u_1(x)u_2(x)...u_n(x)$,写出 f(x) 的求导公式.

(19)(本题满分10分)

已知曲线 L 的方程为 $\begin{cases} z = \sqrt{2 - x^2 - y^2}, \\ z = x, \end{cases}$ 起点为 $A(0, \sqrt{2}, 0)$, 终点为 $B(0, -\sqrt{2}, 0)$,

计算曲线积分 $I = \int_{L} (y+z)dx + (z^2 - x^2 + y)dy + (x^2 + y^2)dz$

(20)(本题满分11分)

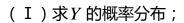
设向量组 $\alpha_1,\alpha_2,\alpha_3$ 是 3 维向量空间 \square 3的一个基, $\beta_1=2\alpha_1+2k\alpha_3$, $\beta_2=2\alpha_2$, $\beta_3=\alpha_1+(k+1)\alpha_3$ 。

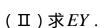
(I)证明向量组 β_1,β_2,β_3 是 \square 3的一个基;

新东方网考研频道 http://kaoyan.xdf.cn/

(Π)当 k 为何值时 ,存在非零向量 ξ 在基 $\alpha_1,\alpha_2,\alpha_3$ 与基 β_1,β_2,β_3 下的坐标相同 , 并求出所有的 ξ 。

(21)(本题满分11分)


设矩阵
$$A = \begin{pmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a \end{pmatrix}$$
相似于矩阵 $B = \begin{pmatrix} 1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1 \end{pmatrix}$.


- (Π) 求可逆矩阵 P, 使得 $P^{-1}AP$ 为对角阵.
- (22)(本题满分11分)

设随机变量 X 的概率密度

设随机变量
$$X$$
 的概率密度为
$$f(x) = \begin{cases} 2^{-x} \ln 2 & x > 0 \\ 0 & x \le 0 \end{cases}$$
 kaoyan.xdf.cn

对 X 进行独立重复的观测,直到第 2 个大于 3 的观测值出现时停止,记 Y 为观 测次数.

$$f(x;\theta) = \begin{cases} \frac{1}{1-\theta} & \theta \le x \le 1\\ 0 & 其他 \end{cases}$$

其中 θ 为未知参数 , X_1 , X_2 X_n 为来自该总体的简单随机样本.

- (I)求 θ 的矩估计.
- (II) 求 θ 的最大似然估计.